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Abstract

Q-learning has often been used in robotics to learn
primitive behaviors. However, the complexity of the
algorithm increases exponentially with the number of
states the robot can be in and the number of actions
that it can take. Therefore, it is natural to try to
reduce the number of states and actions in order to
improve the efficiency of the algorithm. Robot behav-
iors and behavioral assemblages provide a good level
of abstraction which can be used to speed up robot
learning. Instead of coordinating a set of primitive
actions, we use Q)-learning to coordinate a set of well
tested behavioral assemblages to accomplish a robotic
target intercept mission.

1 Introduction

One driving force behind the use of reinforcement
learning in mobile robot tasks is simplicity in task
specification. It is often easier for the human de-
signer to specify a reinforcement function and let the
robot learn the desired task, than to specify the en-
tire task by hand. This form of task specification
is especially attractive because even inexperienced
robot users can provide the reinforcement scheme
even if they cannot program the robot directly. The
main limitation of this approach, however, is that
the complexity of reinforcement learning algorithms
increases exponentially with the number of possible
robot actions. Therefore, it is obviously desirable to
reduce the number of actions, if possible.

Robot behaviors and behavioral assemblages [2] pro-
vide a good abstraction above the low-level details
of sensorimotor interactions. Similarly, perceptual
triggers [2] provide a form of digested perceptual in-
formation that helps the robot decide when to switch
from one behavior to another. This form of en-
capsulation reduces the action and perceptual state
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spaces and is thus suitable for learning high-level
robot tasks, even entire missions.

Dietterich’s research on Hierarchical Reinforcement
Learning with MAXQ [5] illustrates a framework in
which such coordination could succeed. His work
uses a Q-learner for each subtask within a larger hier-
archical structure. Each Q-learner however, is an in-
dependent coordination mechanism, which, once fin-
ished training, could be encoded as a distinct robot
behavior. In this paper, we retain a hierarchical
framework for reinforcement learning, but replace
subtask Q-learner’s with completed robot behavioral
assemblages. This approach differs from existing ap-
proaches in behavior-based robotics (see below) in
that we use Q-learning to learn complete robot mis-
sions instead of individual behaviors.

This research is part of an ongoing DARPA pro-
gram entitled Mobile Autonomous Robot Software
(MARS). Our overall project focuses on multi-level
learning in hybrid deliberative/reactive architec-
tures. Other related papers from our laboratory rel-
evant to this effort include [1, 9, 10].

2 Related Work

Reinforcement learning [8, 17], as used today in
behavior-based robotics, can be classified into the
following categories depending on the task: learning
primitive behaviors, optimizing primitive behaviors,
and learning composite tasks.

When learning a primitive behavior the task of the
robot is to master one specific behavior based on
a reinforcement function. A primitive behavior is
a behavior that cannot be broken further into sub-
behaviors. If a more complex task is desired, several
primitive behaviors can be learned individually and
then combined together by a sequencing mechanism
(see Compositional Learning below).

Mahadevan and Connell [13] used Q-learning to
teach a behavior-based robot how to push boxes
around a room without getting stuck. The task
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was broken manually into three subtasks (behaviors):
finding a box, pushing a box, and recovering from
stalled situations. The task decomposition method
was compared to a monolithic approach where the
task is learned as a single behavior. The results show
that the task decomposition method learns the task
about twice as fast. Asada et al [4], in the context
of robot soccer, trained a robot to shoot a ball into
a goal using visual feedback. Furthermore, Asada
et al [3] evaluated three different methods for learn-
ing new behaviors by coordinating existing behaviors
learned separately by reinforcement learning.

Behavior optimization is useful when a robot almost
knows how to achieve a task but the execution of
the task needs to be fine-tuned. The knowledge of
the robot may come from prior experience or from
a rough solution suggested by a human. Franklin
[7] used reinforcement learning to refine robot motor
control for nonlinear tasks. Smart and Kaelbling [16]
use human-generated control strategies to bootstrap
a robot controller that uses Q-learning to refine these
policies from experience.

In Compositional Learning the assumption is that
the robot already has a repertoire of primitive be-
haviors and its goal is to learn how to organize them
to produce a more complex behavior which is con-
tructed from these primitive behaviors. Maes and
Brooks [11] used this approach to train a 6-legged
robot to walk. An interesting variation of Compo-
sitional Learning is Robot Shaping [6, 15]. In this
case a human trainer, or a training program, trains
a robot to perform sequential tasks such that each
new subtask in the sequence is either a known task
or a slight modification of a known task.

3 Overview of Q-Learning

Probably the most widely used reinforcement learn-
ing method for robotic systems is Q-Learning [18].
This is largely due to its algorithmic simplicity and
the ease of transitioning from a state value function
to an optimal control policy by choosing in every
state the action with the highest value. Following
Kaelbling’s approach [8], at every time step the robot
perceives the perceptual state s. Based on this infor-
mation the robot chooses an action a and executes
it. The utility of this action is communicated to the
robot through a scalar reinforcement value r. The
goal of the robot is to choose actions that, in the long
run, maximize the sum of the reinforcement value.

Let S be the set of distinct internal states that the
robot can be in and let A be the set of actions that
the robot can take. Let T'(s,a,s’) be the probability
of transitioning from state s to state s’ using action
a. If we are given a world model defined by the tran-

sition probabilities and the reward function R(s,a)
we can compute an optimal deterministic stationary
policy using techniques from dynamic programming
(e.g., Value Iteration or Policy Iteration).

It is usually the case, however, that a world model is
not known in advance and the robot needs to learn
this model and simultaneously construct an optimal
policy. Q-learning is an algorithm that does just
that. Let Q*(s,a) be the expected value of the dis-
counted reinforcement of taking action a in state s.
The value of this quantity can be estimated recur-
sively with the following formula:

Q*(5,0) = R(s,) +7 Y T(s,0,8) maxQ*(s', )

s'eS
1
The optimal policy in this case is: 1)
™ = argmax Q*(s,a) (2)
a

In other words, the best policy is, in each state, to
take the action with the largest Q-value. Thus the
Q-function makes the actions explicit, which allows
us to compute them on-line using the following Q-
learning update rule:

Q(S, CL) = Q(S, CL) + a(r + ’YII}LE}XQ(SI, al) - Q(S, CL))
where « is the learning rate, and gamma is the 1%2
count factor( 0 <+ < 1). It can be proven [18] that
this formula converges if each action is executed in
each state an infinite number of times and « is de-
cayed appropriately. For a more detailed discussion
of Q-learning refer to [18, 8].

4 Task Description

The Q-learning method described above was used to
build a behavioral coordination mechanism for an in-
telligent anti-tank mine robot. The anti-tank mine
is designed to intercept enemy tanks as they move
down a nearby road and destroy them. The only
sensor the mine has available to it determines the lo-
cation of enemy tanks within a certain radius. From
this data the velocity and direction of travel of the
tank can be computed.

The sensor information is used in two perceptual trig-
gers: CAN_INTERCEPT and NEAR. The first trig-
ger, CAN_INTERCEPT, is true if the tank is inter-
ceptible given its current velocity and the maximum
velocity of the mine. The NEAR trigger is true if
the mine is within detonation range of the enemy
tank. Combined, these two triggers imply 4 distinct
perceptual states. Figure 4 shows the possible transi-
tions between these states. The circles represent the
perceptual states in binary format: 00 means both
triggers are false, 01 means only CAN_INTERCEPT



is true, 10 only NEAR is true, and 11 means both
triggers are true. The arrows demonstrate the possi-
ble transitions between these states in the intercept
task. For example, if the CAN_INTERCEPT trigger
is valid (i.e., perceptual state 01), but the anti-tank
mine fails to intercept the tank, the state transitions
to 00. However, if the mine successfully catches the
tank, then the tank stops and the mine remains in
state 10 or 11 until the tank is destroyed.

After making an observation, the mine can choose
three different actions to perform: WAIT, INTER-
CEPT, or TERMINATE. The WAIT action causes
the mine to stop moving. The INTERCEPT action
makes the mine move towards the nearest distance
intercept point with the tank. Specifics on how the
intercept point is dynamically calculated as the mine
moves can be found in [14]. The TERMINATE ac-
tion blows up the anti-tank mine and ends the learn-
ing scenario.

Figure 1: The perceptual state space of the robot in
the intercept task.

The robot is rewarded only when it successfully in-
tercepts and destroys the tank. This corresponds to
executing the TERMINATE action when the NEAR
trigger is true. The value of the reward is +10. In
Figure 4 we see the values of the Qtable rise above
this maximum reward of 10. This occurs because the
tank does not have a recognizable terminate state to
transition into after the TERMINATE action occurs.
Instead, when the tank executes TERMINATE, it re-
mains in the current state. This keeps the expected
reward, Q(s’,a’), nonzero and potentially large in
the update equation (Equation 3). The implementa-
tion forcefully ends the scenario after rewarding the
Qlearner.

5 Simulation Results

To test and train the Q-learner, the learning process
is divided into 200 learning scenarios. A learning
scenario consists of 300 time-steps in which the mine
is attempting to intercept the tank. If the TERMI-
NATE action is chosen before 300 time-steps, rein-
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Figure 2: Convergence properties for a training ses-
sion with no obstacles. Top: Reinforcement received.
Middle: Changes in Policy. Bottom: Qualue Table.
The spike in the reinforcement received (Top) around
160 runs occurred because the Q-learner randomly
chose faulty actions in two nearby simulations. The
plateau occurs because the robot received the maxi-
mum reward for 120 simulation runs.



forcement immediately ceases. At the end of each
scenario the two agents (anti-tank mine and enemy
tank) are restarted from their original starting posi-
tions and a new scenario begins.

The Qvalue table is initialized in the beginning of
every experiment with a set of random values be-
tween 0 and 1. Every time the robot’s perceptual
state changes or a reward is received, the table is
queried to determine the action with the highest Q-
value. This is different from Kaelbling’s approach
which queries the table at every time-step (Equation
3).

Whenever the Qvalue table is queried, Watkin’s up-
date rule is also applied. The update rule uses a
discount factor of v = 0.9, and a decaying a value.
The « value is initialized to 1.0 and is reduced each
time the table is updated using the update formula
a = 0.99a. An exploration method using a decaying
exploration factor was used. The initial exploration
rate, e, was set to 0.5 and the following decay formula
was used: e = 0.99e.

5.1 Convergence Metrics

The success of the Q-learner was judged by the con-
vergence properties of the Q-value table. Several
convergence criteria were used:

e reinforcement received vs. trial number
e number of policy changes

e convergence of the Qvalue table

The first metric plots the amount of reinforcement
received in every learning scenario. In general, the
robot should receive reinforcement more often as the
training progresses if the behavioral mapping is con-
verging to a successful solution. It is evident from
both top graphs in Figures 4 and 5.1, that the robot
is indeed receiving reinforcement more often as its
training proceeds. Both graphs were smoothed with
a running window filter to show the general learn-
ing trend. As seen in both figures, it is impossible
to determine where or if convergence occurred, or
to identify the exact difference in learning rates be-
tween training sessions. The graph oscillates signifi-
cantly due to variations in sensor readings, obstacles
in the environment, or continuing exploration. An-
other metric is needed to determine stabilization.

The second metric monitors the number of policy
changes over time. This metric is derived by look-
ing at the Q-table at each time-step and counting
how many times the policy defined by the Q-table
changes. The middle graphs of Figures 4 and 5.1
show the number of policy changes that occur dur-
ing each learning session. The purpose behind this
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Figure 3: Convergence properties for a training ses-
sion with 15% Obstacles. Top: Reinforcement re-
ceived. Middle: Changes in Policy. Bottom: Qualue
Table.



metric is to show the volatility of the Q-learner. If
it is spiking with a large number of changes it is less
likely that the Q-learner is nearing convergence.

The third metric monitors the change in the Qvalues
as learning progresses. The lower graphs in Figures 4
and 5.1 demonstrate the performance of this metric.
At the point of convergence, several values in the
table show a marked increase in value, separating
them from the other values in the graph.

5.2 Policy Extraction

Once the Qvalue table has stabilized, a policy for the
robot can be extracted by choosing for each internal
state the action with the highest associated Q-value.
An example is seen in 1.

Perceptual State

Action Qvalue

Near Canlntercept
False False WAIT 0.51537
INTERCEPT *  4.69802
TERMINATE 0.53961
False True WAIT 0.56231
INTERCEPT * 6.01844
TERMINATE 0.54739
True False WAIT 1.34008
INTERCEPT 1.20292
TERMINATE * 6.58522
True True WAIT 1.4863
INTERCEPT 1.10925
TERMINATE * 11.4678

Table 1: The values of the Q-table in the final ses-

sion using 5% Obstacles. A (*) indicates the best
action to choose for each internal state. Note that
some of the values in the @Q-table are greater than
the mazimum reward.

5.3 Successful Policies

In this task, two possible policies exist in which
the anti-tank mine receives the reward. The first
solution is to perform the WAIT action until the
CAN_INTERCEPT trigger becomes true. At that
time, the mine performs an INTERCEPT action un-
til the NEAR trigger becomes true and then executes
the TERMINATE action.

The second possibly correct policy never performs
the WAIT action. It immediately chooses the IN-
TERCEPT action even though the nearest distance
intercept point is unknown. When the INTERCEPT
action is performed without a point of intercept the
mine moves in a straight line along whatever direc-
tion it is currently facing. This is analogous to pa-
trolling versus lying in wait.

5.4 Convergence in the presence of Obsta-
cles

To further test the convergence properties of the al-
gorithm the task was repeated in the presence of en-
vironmental obstacles. Using the MissionLab Sim-

ulator [12], artificial worlds with 0% through 30%
obstacle coverage were generated. Figure 5.4 shows
a world with 10% obstacle coverage within the area
of concern. The box drawn in the figure demon-
strates the maximum dimensions of the obstacle field
through which the anti-tank mine has to pass. It is
designed to make certain that the mine cannot pass
around the edges of the field to catch the tank.

Figure 4: A sample mission with 10% obstacle cov-
erage. The dotted line represents the bounding area
of the obstacle field
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Figure 5: Evaluation of the convergence of the al-
gorithm with increasing obstacle densities. The plot
shows an average over 8 trials for each obstacle den-
sity.

The presence of obstacles slows down the movement
of the anti-tank mine robot and in general it takes
more time steps for the robot to reach the intercept
point. The maximum number of time steps (300) al-
lowed may not be enough in this case since the task



has a time component and if the robot mine does
not reach its goal in a certain time window it cannot
receive any reinforcement (i.e., the tank will pass by
and there won’t be a second chance to intercept it in
this learning scenario). Therefore, the convergence
rates are expectedly slower than in the case with no
obstacles. Figure 5.1 shows the results for 15% ob-
stacle coverage. Figure 5.4 shows the degradation in
performance for the number of policy changes metric
associated with the increase of obstacle coverage. Af-
ter 8 trials for each of the obstacle densities, the aver-
age number of simulations required for convergence
rises substantially with the percentage of obstacles in
the environment. Obstacle percentages greater than
30% are not shown in this graph, because in all of
the testing with greater percentages, the landmine
never once received a reward for a successful inter-
cept. Additionally, with 30% obstacle testing, the
robot was rewarded only once throughout all of the
testing (Fig. 5.4).

As mentioned earlier, the competing solutions prob-
lem becomes critical to the stabilization of the Q-
learner when obstacles are involved. The greater the
number of obstacles, the more often the chosen pol-
icy fails to receive a reward. In other words, the two
competing solutions will continue to oscillate until
the alpha value decays completely. This phenomenon
is seen in Figure 5.1, and was typical to the results
of training sessions with obstacles.
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Figure 6: Percentage of successful intercepts versus
obstacle density.

6 Robot Results

The real robot experimentation used a Nomad 150
robot with a top mounted SICK laser scanner acting
as a surrogate intelligent anti-tank mine. A rolling

cylinder that could be manually moved in a straight
line with a rope and pulley system took the place
of the tank (Fig. 7). The robot experiments had two
objectives: 1) to verify that the results of the learning
performed in simulation can be easily ported to a real
robot; and 2) to test if the method is feasible for on-
line learning on the robot.

The first objective was achieved in a relatively
straightforward manner, except for some minor de-
tails that had to be added to the implementation
of the physical robot’s behaviors and perceptual
triggers. The modifications consisted primarily of
adding filters to the perceptual triggers to reduce the
effect of false readings which did not occur in simula-
tion. At each time step, the readings from the SICK
laser scanner were analyzed to detect circular objects
possessing a 1-ft radius. This determined the current
position of the tank relative to the current location
of the mine. The change of tank position over time
was used to calculate the point of interception (see
[14] for details on this procedure). In most experi-
ments the mine-robot had to move approximately 8
feet to reach the nearest point of interception.

After the differences between simulation and hard-
ware were sorted out, a successful solution derived
in simulation was tested on the robot. The surro-
gate tank was manually moved across the room in a
straight line, along a path the mine-robot could in-
tercept. When the mine-robot determined that the
intercept was possible, it moved in a straight line to-
wards the intercept point. It then successfully termi-
nated the enemy robot when it came in range. Both
of the correct solutions appearing in simulation were
tested in this manner.

The second set of testing with the Q-learner was de-
signed to show that learning on the real robot was
equivalent to the learning in simulation. Using the
improved version of the Q-learner, the intercept sce-
nario was run 20 times on the robot on three separate
occasions. This time the Q-learner was started from
scratch, with no prior simulation experience. The
mine-robot converged to a successful solution by the
15th run in all three tests. Figure 6 shows the proper-
ties of the Q-value table for one of these runs. Notice
that the actions which result in a successful intercept
have diverged significantly from the initial incorrect
actions.

7 Summary

This work shows that Q-learning is a valid approach
for robot behavioral assemblage selection. In both
simulation and on the real robot, we have demon-
strated learning successful policies given a limited
set of behaviors and perceptual triggers. Addition-
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Figure 7: A successful interception: (a) Tank moves in from the left (b)-(e) Mine moves in straight line

toward nearest distance intercept (f) Interception.
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Figure 8: Q-values during a real robot learning ez-
periment. Notice how three of the values separate
from the rest around the 12th run. This is where
the learning stabilizes. The remaining values remain
almost linear throughout the testing.

ally, the policies learned by the simulation could be
directly ported to a robot platform with the equiv-
alent behaviors and perceptual triggers. In other
words, if all of the behaviors and triggers used by
the Q-learner work in both environments, then the
results of simulation testing, perhaps involving hun-
dreds or thousands of trials, could be used for more
complex tasks that would be impossible to learn on
the robot itself.

In addition, we demonstrated the effects of environ-
mental noise, i.e., obstacles, on the convergence rate
of the Q-learner. We found that the number of sim-
ulations required for convergence increases exponen-
tially with the percentage of noise in the environ-
ment. The number of possible successful scenarios,
however, was found to be inversely related to the
percentage of noise in the environment.

There are several issues that remain to be addressed.
The first question is the nagging problem of complex-
ity. As the number of behavioral assemblages and
perceptual triggers used by the robot increases, the
complexity of the algorithm increases exponentially.
Using high-level robot behaviors to avoid the curse of
dimensionality helps, but this is accomplished at the
expense of generality. One solution we are currently
exploring is to combine the Q-learning coordination
mechanism with other machine learning algorithms
which can adjust behavioral parameters in response
to environmental pressures.

A second particularly important question to this re-
search is the application of reward. When should
continuous reward be applied and when a delayed
reward? When should negative reinforcement be
applied? Preliminary work on this problem, espe-



cially with regards to negative reinforcement, shows
that noise can have an adverse effect on performance
with these alternative reward scenarios. Applying a
penalty when a trigger has misfired, or obstacles in
the environment are preventing success, can prevent
the Q-learner from choosing that action ever again.
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